Histopathologic validation of 3'-deoxy-3'-18F-fluorothymidine PET in squamous cell carcinoma of the oral cavity

E. Troost, J. Bussink, P. Slootweg, W. Peeters, M. Merkx, A. van der Kogel, W. Oyen and J. Kaanders

Department of Radiation Oncology, Institute of Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. e.troost@rther.umcn.nl
May, 2010



Accelerated tumor cell repopulation is an important mechanism adversely affecting therapeutic outcome in head and neck cancer. The noninvasive assessment of the proliferative state of a tumor by PET may provide a selection tool for customized treatment. 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a PET tracer that is phosphorylated by thymidine kinase 1 (TK-1) and, as such, reflects cellular proliferation. Before the use of (18)F-FLT PET for tumor characterization is accepted and introduced into clinical studies, validation against tumor histology is mandatory. The aim of this study was to validate (18)F-FLT PET in squamous cell carcinomas of the oral cavity using immunohistochemical staining for the proliferation marker iododeoxyuridine and for TK-1.Seventeen patients with primary squamous cell carcinomas of the oral cavity underwent an (18)F-FLT PET/CT scan before surgery, and iododeoxyuridine was administered 20 min before tumor resection. (18)F-FLT PET/CT scans were segmented, and PET/CT volumes and PET signal intensities were calculated (mean standardized uptake value [SUV(mean)] and maximum standardized uptake value [SUV(max)]). Multiple paraffin-embedded tumor sections were immunohistochemically stained for iododeoxyuridine and TK-1. For iododeoxyuridine, labeling indices and optical densities were calculated and correlated with SUV(mean) and SUV(max). TK-1 staining was visually and semiquantitatively assessed.All primary tumors were identified with (18)F-FLT PET but with a large range in tracer uptake (mean SUV(max), 5.9; range, 2.2-15.2). Also, there was a large variability in iododeoxyuridine labeling indices (mean, 0.09; range, 0.01-0.29) and optical densities (mean, 28.2; range, 12.6-37.8). The iododeoxyuridine optical densities correlated significantly with SUV(mean) and SUV(max), but the labeling indices did not. In most tumors, TK-1 staining of varying intensity was present but correlated with neither iododeoxyuridine binding nor (18)F-FLT uptake.The current study demonstrated only a weak correlation between (18)F-FLT uptake and iododeoxyuridine staining intensity in oral cavity tumors. This weak correlation may be explained by differences in biomarker characteristics, resolution, and quantification methods.