Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA.
Oct, 2009
We investigated the contractile phenotype of skeletal muscle deficient in exons MEx1 and MEx2 (KO) of the titin M-band by using the cre-lox recombination system and a multidisciplinary physiological approach to study skeletal muscle contractile performance. At a maximal tetanic stimulation frequency, intact KO extensor digitorum longus muscle was able to produce wild-type levels of force. However, at submaximal stimulation frequency, force was reduced in KO mice, giving rise to a rightward shift of the force-frequency curve. This rightward shift of the force-frequency curve could not be explained by altered sarcoplasmic reticulum Ca(2+) handling, as indicated by analysis of Ca(2+) transients in intact myofibers and expression of Ca(2)(+)-handling proteins, but can be explained by the reduced myofilament Ca(2+) sensitivity of force generation that we found. Western blotting experiments suggested that the excision of titin exons MEx1 and MEx2 did not result in major changes in expression of titin M-band binding proteins or phosphorylation level of the thin-filament regulatory proteins, but rather in a shift toward expression of slow isoforms of the thick-filament-associated protein, myosin binding protein-C. Extraction of myosin binding protein-C from skinned muscle normalized myofilament Ca(2+) sensitivity of the KO extensor digitorum longus muscle. Thus, our data suggest that the M-band region of titin affects the expression of genes involved in the regulation of skeletal muscle contraction.